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ABSTRACT
From a historical perspective, there have been many sci-

entific attempts to find a relationship between images and
music with respect to the emotions that both subjects invoke.
In modern times, these scientific efforts have been facilitated
by the use of computers aiming to discover evidence for ob-
jective correspondence between visual and audible informa-
tion. Based on existing research, this research is targeted
to analyze currently used algorithms for reading music from
images by comparing their output based on feedback from a
pool of testers. The second goal is to provide an improved
algorithm for conversion of images into music that will ex-
tend on the algorithms analyzed in the experiments. This is
a process that uses the results of two existing algorithms in
the design of a third algorithm, focal analysis.

1. INTRODUCTION
The relationship between music and colors is a relatively

old topic of interest. Some of the first accounts of analyzing
this idea can be found in ancient Greek literature. A very
serious attempt to unify the two concepts was made by the
philosophers Aristotle and Pythagoras. In his work titled De
sensu et sensibilibus, Aristotle states that colors are always
in numerical proportion to one another and similarly, “we
may regard all these colours [viz. all those based on numeri-
cal ratios] as analogous to the sounds that enter into music”
[4].

Similar theory on the topic was held by Pythagoras, who
presented the idea of universal harmony based on propor-
tions. Pythagoras’ claim is that everything in the Universe
uses the language of mathematics and can be described by
numbers and ratios. According to his theory, rhythm, music,
and mathematics are mutually related through proportions
[14].

The main objective of this research is to further analyze
the chromatic attributes of images, building upon the ex-
isting results of three papers [11] [8] [13]. The notions of
harmony and audiovisual sensation are converted into a
contemporary mathematical form through the use of basic
building blocks called “chromatic indices” and “chromatic
bricks” [13] and produce an algorithm that converts images
to pleasant pieces of music. The subjective factor of being
pleasant is scientifically undefined. Therefore, in order to
justify final results, a comparison is made between the re-
sults of the direct mapping algorithm and our focal analysis
algorithm. Amazon’s Mechanical Turk ([3]) is used to gener-

ate results (workers submit responses to a survey containing
generated music from images). Further information on the
performance evaluation can be found in Section 6.

This research aims to unveil the underlying relationship
between graphical content and music. Its results are an-
ticipated to serve as a source of inspiration for composers,
musicians, and anyone who works with music. It may also
serve as an inspiration for non-musicians to enter the field
of music. Furthermore, entertainment remains one of the
major justifications for our research. Many would love to
try hearing the music of the images around them. In ad-
dition, the core algorithm could be implemented for mobile
devices, a market in which we would expect much interest.
Taking a photo of a beautiful landscape and listening to the
sounds of nature are expected to be considered entertaining
and attractive to large groups of people.

2. TERMINOLOGY
Our discussion of the following implementation will in-

volve some basic knowledge of musical terms, as well as a
few terms that we have defined for the purposes of our re-
search.

• Pitch/Tone - A specific frequency of sound. All sounds
have a pitch, though the term pitch is most often used
in music for sustained sounds that come from instru-
ments or voices.

• Note - A name given to a specific pitch for ease of
reference. For instance, the note for the pitch repre-
senting 440Hz is called A.

• Interval - The distance between two pitches in terms
of their relative frequencies. For example, the note
A4 (440Hz) is said to be an octave (eight increments)
below A5 (880Hz).

• Timbre - The quality of a sound that allows us to dif-
ferentiate between different types of instruments. Even
when playing the same notes, a piano sounds very dif-
ferent from a guitar, and this is because of the tim-
bre of the sounds they produce. Timbre is generally
described with subjective words like “warm”, “dark”,
and “bright”, which suggests that images with simi-
lar subjective qualities could be assigned a timbre in
their generated musical piece. Timbre is modified by
changing the type of instrument when playing music.

• Melody - In music where only one note is playing at a
time, the melody is simply the pattern of notes being



played. In music where multiple notes are played at
the same time (most music), the melody is the most
important set of notes in the piece. In many songs, the
melody is the part which the lead singer sings.

• Counterpoint - The intentional combination of two
or more melodies which are played simultaneously. Both
melodies are equally important, and consequently their
juxtaposition achieves a unique effect.

• Key/Scale - A set of notes that are related by their
distance (in Hz) from one foundational note. These
notes generally sound cohesive together when used ex-
clusively in a piece of music. For instance, the key C
major is comprised of the notes C D E F G A B, and
the key E major is comprised of E F# G A B #C D.

• Chromatic (music) - Describes a sequence of two
or more notes that are adjacent to one another. For
example, the notes (C C#) are said to be chromatic
because there are no notes between C and C#.

• Chromaticism (music) - The use of notes not be-
longing to the scale in the given key. (e.g., the use of
the note D# in a piece written in the key C major).
While this does not sound “cohesive” by the previous
definition of a key, these notes can be used selectively
by composers to create more interesting pieces of mu-
sic.

• Dissonance - The combination of notes that sound
harsh or unpleasant. This can arise from the use of
chromaticism. While dissonance by definition sounds
harsh and unpleasing, in certain contexts it can be
pleasing and powerfully emotional.

• Chromatic Index - This is a field of research and is
fully described in [6]. In short, it is the musical tone
that corresponds to a particular color after a key has
been chosen.

• Chromatic Brick - A term introduced in the paper
[13]. It is the pairing of a chromatic index and a du-
ration (in seconds), both of which are decided upon
by combining adjacent pixels of similar color into one
component - the chromatic index is decided by the
color of the block and the duration by the length of
the block.

• Musical Phrase - A number of notes that are grouped
together and form some cohesive pattern. Similar to
a phrase in literature, phrases make up the whole of a
musical piece.

• Harmonic - Relating to harmony, or groups of sounds
that are pleasing.

3. RELATED WORK
A number of researchers and programmers have explored

ways in which images can be related to music. Contem-
porary research in the area of music composition from vi-
sual information has been made primarily in two directions
- direct mapping and chromatic analysis. The following are
high-level explanations of both direct mapping and chro-
matic analysis. In Section 4, we go into detail about our
implementation of these different approaches.

3.1 Direct-Mapping
The “Direct-Mapping” approach broadly describes a sys-

tem in which each pixel of an image is assigned a note value
based on some consistent rule. Applying this technique, vi-
sual information is directly converted to musical notes. This
approach has one major known shortcoming - it only reads
the numerical information from the images and completely
ignores the subjective factor of feelings. However, this ap-
proach has been the most common proposal for the past 300
years [12]. There exist applications which directly convert
images to music in this way, but their rules for generating
music are completely arbitrary. For example, the program
AudioPaint [9] uses the red and green components of a pixel
to determine the amplitude of the left and right audio chan-
nels, and the blue component is ignored entirely.

3.2 Chromatic Analysis
The second approach is to perceive the information from

the image and attempt to identify a sense of what the im-
age represents. This direction of research is more interest-
ing because it accounts for the subjective factor of images,
namely the feelings they evoke in the observer. Understand-
ing how these feelings occur and what they are based on are
essential to relating their graphical information to music.
Modern findings on the topic introduce the ideas of chroma
(the Greek word for color), chromatic index, and chromatic
brick. Those concepts are established fundamentals in some
research directions [13] [8]. The relationship between col-
ors, music, and chroma is well studied and will be a major
premise of this paper. Their complete relationship is de-
scribed thoroughly in [13] [6]. The specific colors and their
associated chromatic indices are shown in Figure 1.

Figure 1: Chromatic Index Table

Many researchers have attempted to explore the connec-
tion between the visual and auditory systems [12] [6], and
some have even devised algorithms that attempt to con-
cretize the mapping of pixels to melodic phrases [13] [11] [8].
We are most interested in the research conducted by D. Mar-
gounakis and D. Politis [13]. In their papers, they describe
an algorithm called “Chromatic Analysis” which transforms



common pixels of an image into musical phrases. A notable
shortcoming of this approach, however, is the lack of user
testing. Without the subjective approval of other people,
it is impossible to determine whether or not the software is
effective at generating music. Our research solves this issue
by having user tests as an evaluation criteria.

3.3 Relating Music and Images
Research on the connection between vision and sound goes

in both directions. In addition to turning images to music,
there exists research about visualizing music as images [7].
This research is akin to designing compelling music visualiz-
ers found in popular audio playback software such as iTunes.
If future research involves generating real-life imagery from
music, we would have some very interesting complementary
research.

A phenomenon known as synesthesia can help us learn
more about how humans relate sounds to images. Derived
from the Greek for “joined sensation,” synesthesia is a con-
dition where people can have multiple disjoint sensations
in response to one stimulus. This condition had not been
widely researched until about 20 years ago, as patients who
complained about these symptoms were not taken seriously
or were diagnosed with an “overactive imagination” as chil-
dren. However, interest has grown in recent years, possibly
due to more information about how perception functions in
the brain [5]. We are interested in looking at how our results
integrate with the existing knowledge of the problem and if
there is an inhereht relationship between the medical find-
ings and our findings. The subfield most applicable to this
research is called chromesthesia, which is a condition where
music and sounds invoke feelings of color.

4. SYSTEM MODEL
The entire system is comprised of a framework for receiv-

ing images and running an algorithm to generate musical
notes, the two implemented algorithms which work within
this framework, and a mobile application which allows the
algorithm to be demonstrated to users. This section de-
scribes the system in greater detail.

4.1 Overview
At its core, the system loads an image, runs an algorithm

over the image, and returns a set of musical notes. These
notes can then be played directly by our system, or they
can be saved in the form of sheet music to be played by a
musician. The system is also tested as described in Section 6.
Figure 2 shows a diagram of the system’s major components.
A basic description of the process is as follows:

1. The two algorithms (direct mapping, focal analysis)
receive an image as input.

2. The image is converted to music based on the two al-
gorithms described later in this section.

3. The results of the algorithms are then posted on Ama-
zon Mechanical Turk ([3]) so that the workers there
can give feedback which one of the algorithms is do-
ing better than the others. Based on their feedback,
certain parts of the algorithm are modified in order to
experiment and see which features of the algorithms
provide optimal results. Testing is more thorougly de-
scribed in Section 6.

4.2 Direct-Mapping Algorithm
This algorithm is given the image as an object, giving

it access to the individual pixel colors at every x, y coordi-
nate. From this, more information can be extracted from the
image, such as brightness, saturation, sharpness, but these
factors have been discarded in favor of treating color as the
main and sole component for note composition. The direct
mapping algorithm computes a musical note for each pixel
by adding the red, green, and blue color components, then
maps that value to one of the 88 keys of a piano using the
modulo function. For example, a solid blue pixel with RGB
values of 0, 0, and 255, respectively, will be mapped to the
(255+0+0)%88 = 79th key on a piano, which is a D#. This
has some obvious issues - namely, a solid blue color will map
to the exact same note as a solid red color, and other color to
note mappings do not seem to have any logical basis. This
issue is expected, as the direct mapping algorithm is merely
a proof of concept to show that our framework for running
the algorithm functions as correctly. As described in Section
3, other image to music mapping programs use completely
arbitrary rules, and our goal was to see what could be done
with note creation and image analysis.

Figure 2: System Diagram

4.3 Extended Chromatic Analysis, xCA

4.3.1 General Outline
Extended Chromatic Analysis consists of five distinct steps:

1. Reading and resizing the image.

2. Performing ”focal analysis” on the resized image to
identify the focal objects.

3. Extracting the focal objects from the image and con-
verting them to nodes in a graph.

4. Performing chromatic analysis on each node that pro-
duces the chord progressions for that node.

5. Connecting all chord progressions into a music melody.



4.3.2 Image Input and Resizing
When an image is provided to the program as input, it is

scaled through an image resizing procedure. The maximum
bounds for height and width were set to 400 pixels each.
After the user selects an image, the ratio of width to height
is computed and the longer side, if greater than the limit,
is scaled by a factor to 400. Then the factor is applied over
the entire image, resulting in a picture with each side being
at maximum 400px.

4.3.3 Focal Analysis
Focal Analysis is an image processing procedure that ex-

tracts the objects which attract the viewers’ attention first
(schematically represented in Figure 3). When a viewer
looks at an image, the eyes focus on the highly contrast-
ing objects of the image, and next they perceive the rest of
the picture. This natural behavior is the inspiration behind
the ”Focal Analysis”procedure - the objects captured by this
image processing algorithm can then be converted to music
first, after which the rest of the image is converted to music.

Figure 3: Focal Analysis Diagram

Focal Analysis was discovered after performing 3D his-
togram color analysis. Each image provided to the program
is visualized in an xyz-plane where the xy-plane is the di-
mensions of the image and the z-plane contains the values of
each color channel plotted. This could be similarly viewed
as three independent plots of the the red, green, and blue
channels over the image. Since all values for a channel are
numbers in the closed range [0;255], the 3D plots are easily
analyzable.

Each of the histograms is sliced into the average red,
green, and blue value of the whole image. From the obtained
results, slicing each histogram layer in the corresponding av-
erage color for the channel produces the best results. As an
example, the red slice in the histgoram is cut at 132 (average
red), 95 (average green), and 63 (average blue), but the best

result is provided from slicing it at 132. The same pattern
is observed for the rest of the slices, so the same procedure
is applied for them as well.

Each of the slices from the previous step is passed into a
color distribution procedure. Since 256 is 162, the range for
the distribution is set to 16 and then 16 different layers are
extracted from the slice. For example, on the r-132 red slice,
16 layers are created, each layer representing the grouping
of pixels from [0;15], [16;31], [32;47],... [240;255]. The lay-
ers that have 0 elements, i.e. no pixels within the range,
are discarded. The rest of the layers are ordered by how
many pixels are contained within them. Then the ordered
distribution is passed to a selection function.

The selection function makes a grid on top of each layer
where a cell from the grid is 20x20 pixels. The numbers are
chosen from the bounds of the maximum dimensions: 400 is
202. In this procedure, each grid cell delineates a portion of
the layer. Then the amount of color in each cell is evaluated.
If it is more than 1

3
, or 0.334, the cell is considered valuable

- this means that there is an object in this location and,
from the experimental procedure, also suggests that there
would be other dense objects nearby. The value of 1

3
was

established experimentally. After performing the operation
on a number of images it was found that majority of the
layers that have cells of density below 1

3
do not perform as

well in capturing the focal objects of the image, while the
majority of the grid cells of density equal or above 1

3
contain

focal objects. These observations led to selecting 1
3

as the
limiting value.

After all layers from all color channels have been ana-
lyzed by the procedure, those containing dense color cells
are grouped into clusters and passed along to the graph con-
struction algorithm.

4.3.4 Converting Layers to Graph Nodes
The layers are passed a linked structure to a Graph con-

structor (see Figure 4). As they arrive, each layer is either a
red, green, or blue colored piece. However, the coordinates
of the pixels of each R, G, B color are the same as the coor-
dinates of the focal objects from the original image. Given
this fact, the graph constructor scans each layer according
to its x and y coordinates, while reading color data for the
same pixels from the original image. Additionally, it also
keeps track of the area of each focal object.

When a focal object is read, its average color is computed.
This average color is then mapped to the closest of the chro-
matic indices given in Figure 1. This allows for the creation
of a ’chromatic vertex’, which is a simple data structure,
representing a node in the graph - it contains the closest
chroma based on the table and the area that the chroma oc-
cupies. This information is used when performing chromatic
analysis on each node. The ’chromatic graph’ is a chain of
chromatic vertices.

In the end all chromatic vertices are ordered by the area
that they occupy - this is due to the fact that each chromatic
vertex represents a focal object of a highly contrasting color.
Its area describes how likely it is for a viewer to look at it
before looking at anything else - the larger it is, the more
likely it is at the focus of the image.

After all the vertices have been ordered by area starting
from the largest one to the smallest one, a procedure called
”shrinking” is applied. Shrinking is connecting two or more
neighboring vertices of the same color into one large chro-



Figure 4: Graph Generation Diagram

matic vertex of the same color but with a combined area.
Shrinking is performed until the graph cannot be shrunk any
more.

4.3.5 Chord Progression Generation
The following table of indices in Western scale keys are

used to create ’moods’ with chord progressions.

Mood Index in key CI Instrument
alternative 6, 4, 1, 5 ≤ 1.0 piano
canon 1, 5, 6, 3, 4, 1, 4,

5
≤ 1.1 piano

cliche 1, 5, 6, 4 ≤ 1.2 clarinet
cliche2 1, 6, 3, 7 ≤ 1.3 xylophone
endless 1, 6, 2, 4 ≤ 1.4 trumpet
energetic 1, 3, 4, 6 ≤ 1.5 marimba
memories 1, 4, 1, 5 ≤ 1.6 guitar
rebellious 4, 1, 4, 5 ≤ 1.7 viola
twelvebarblues 1, 1, 1, 1, 4, 4, 1,

1, 5, 4, 1, 5
≤ 1.8 violin

wistful 1, 1, 4, 6 ≤ 1.9 guitar
grungy 1, 4, 3, 6 ≤ 2.0 guitar
sad 1, 4, 5, 5 ≤ 2.1 accordian

Figure 5: Chord Progression Diagram

The data from this table is used to generate a general
chord progression for the chromatic vertex. The chromatic
index for each vertex is indexed into the table by the ’CI’
key. Then the appropriate mood is selected and an algo-
rithm for generating a chord progression within the mood,
given C major as a starting key, is used to generate a chord
progression for the given vertex. Given the chromatic index,
the appropriate instrument is chosen. Based on the mood,
the instruments were classified as cheerful or minor and were
associated with suitable moods.

4.4 Music Generation
After chord progressions are generated for all chromatic

vertices, the progressions are combined together in a song.
With the help of jFugue [10], the song is recorded in MIDI
format, which can later be played from any device with audio
support.

4.5 Mobile Application
One compelling way to demonstrate our algorithm is with

an interactive mobile application. With it, a user can take
a picture with their mobile device, then play the generated
music to “hear” how the image sounds. The structure of this
application is illustrated in Figure 6 below:

Figure 6: Android Application Diagram

The mobile application is implemented for the Android
operating system. This allows the code to be consistent with
the Java implementation of the core program. Additionally,
Android is currently the most popular mobile operating sys-
tem in terms of installed users, and a future commercial
application release would reach the largest number of users
compared with Apple’s iOS or Windows Phone. A commer-
cial release will be possible only after modification of the
focal analysis algorithm to function entirely on the device.

The webserver runs using the Python BaseHTTPServer.
A Python webserver is very simple to build and deploy, and
it allows programs to be run through the command line,
which proves useful for playing with the output. The reason
for including a web server in our mobile application imple-
mentation is a result of exploring the most practical way to
implement the application in a limited time frame. Since
the javax.sound.midi library is not present in the standard



Android Java libraries. The Android developer tools also do
not allow bundling this library into the Android application,
therefore music could not be generated directly on the phone
without a major modification of our existing code. Instead
of rewriting the focal analysis implementation, the code is
left as-is and run on an external webserver. This creates
latency between the time the picture is taken and the time
that music can be played from the image, and it requires
the user to have a network connection whenever a new pic-
ture is taken within the application. While this latency is
only about two seconds, the constant network requirement
is not acceptable for many mobile devices. The choice to
include a webserver results in one unexpected benefit: mod-
ifications and testing are very easy to perform through the
application.

5. SYSTEM IMPLEMENTATION
We decided to implement our system in Java for a num-

ber of reasons. The abstraction reduced programming time
compared with lower-level, more powerful languages like C.
There are also several libraries that have been integral to the
success of our research. One of these is the JFugue library
[10], which is an open-source Java API for programming
music without dealing with the complexities of MIDI gener-
ation 1. The JFugue library’s Pattern class is particularly
useful for using the groupings of notes that have been ear-
lier defined as “chromatic bricks”. The library also supports
microtones, intervals not found in the Western system of
12 equal intervals 2, but instead in more uncommon scales
that may be chosen in a case of a picture with a high chro-
matic index. The library also features a very well written
and comprehensive documentation consisting of 11 chapters
that include full descriptions of the library classes as well as
a basic introduction to the concepts of music composition.

6. RESULTS
As a “sensory” system involving visual and sonic elements,

evaluation of success might seem difficult; however, objec-
tive measures were used as evaluation criteria. Amazon’s
Mechanical Turk ([3]) provided statistics on the accuracy of
the main algorithm (focal analysis) compared to the direct
mapping algorithm. Mechanical Turk workers were asked
to complete our specified Human Intelligence Test (HIT),
which will involve viewing an image and listening to a short
musical accompaniment (generated from one of the three al-
gorithms), and then determining if the accompaniment is
appropriate for the image shown.

We tested one hundred workers with a three question sur-
vey regarding the connection between image and output mu-
sic. Survey participants were asked to listen to a piece for
30 seconds (all the audio outputs were under one minute),
and then asked to rate their opinion on whether the gener-
ated music was not at all relevant to the image from which
the music was generated (a zero), extremely relevant to the
image (a ten), or somewhere in between (one to nine). Par-
ticipants performed this process for two additional image
inputs and musical outputs to complete the survey. The
first of the image inputs is seen in Figure 7.

This image (Figure 7) has a vibrant array of colors and
is realistic, so to cover all avenues of possibility, the next

1A music file format that specifies music in digital form.
2A standard for musical notation.

Figure 7: Image Input: Question 1

two images for question two and three are chosen carefully.
Two’s input image is a artifical painting (not a digital still
of a real-life setting) with a more limited number of colors
aTimnput image is a larger scale photo of a college cam-
pus scene, capturing far more than the diphoto in imaimage
one. It also has an extremely dominant color (green) in com-
parison to the first image. Choosing these input images in
this manner (with respect to diversity in color, contrast, and
digital versus real life) is imperative to the validity of these
results.

Figures 8 and 9 show the output of the first Question with
Direct Mapping and Focal Analysis, respectively.

Our results in Figure 10 show a slight difference between
our two algorithms, and this follows from our initial hypoth-
esis that the work will be difficult to distinguish meaning
from a different interpretation of less significance. However,
our results did show a slight improvement over the initial
method, and we believe with further refinement of output
to adhere to classical music rules, these results will improve
even further.

As seen in the Figure 10, the mean rating for image to
musical relevance increased by 0.552 points when comparing
the results of Focal Analysis to the Direct Mapping method.
These results are difficult to interpret without giving com-
parison to related work in the field, but our research has not
yielded any projects that have given results past a singular
example for the project’s output (i.e., one example of an
input / output pair for image to music).

7. ETHICS
For the most part, this research remains without ethi-

cal reservations. Our data collection was performed anony-
mously and without obtaining any personally identifiable
information. The only information obtained was the respon-
dent’s opinion ratings and his or her Mechanical Turk ([3])
worker ID (used to ensure payment for completing the sur-
vey). Applying for IRB approval was still necessary, how-
ever, and we completed this process without problems.

Even with the mobile application, ethical issues are nonex-
istent. The phone sends a photo to our server, which per-
forms our algorithm and sends back song data to the phone.
A hypothetical situation can be imagined, perhaps, in which
the photo is intercepted before reaching the server, but this
is a risk any internet user faces when accessing the web.



Figure 8: Direct Mapping: Question 1 Output. See
[1] for musical output.

8. FUTURE WORK
Future additions to our focal analysis algorithm will in-

volve several components. Firstly, plans are in place to fur-
ther refine musical output based on additional classical mu-
sic theory, which is a collection of rules that guides music
composers still to this day. Typically, music that adheres to
these rules will sound pleasant and mistake-free to the lis-
tener. Focal analysis already follows standard arrangement
technique in composing, and the next step would involve
incorporating some of the more intricate rules of music the-
ory that guide note changes and counterpoint. One exam-
ple would be outlawing parallel perfect fifths (as one note
changes by a certain frequency, no other note should follow
in a similar interval in a similar direction at the same time).
This rule, along with others, such as choosing the next chord
inversion of least movement, could be implemented as a se-
ries of checks on the next step of note generation as the input
image is being converted to music.

Additionally, this research will expand into pattern recog-
nition and interpreting patterns from the picture into a melodic
line that fits over the chord patterns that we currently gen-
erate. Current plans involve generating multiple lines and
scoring them individually based on theory rules, choosing
the melody with the highest score to fit over the chord
changes.

Lastly, our focal analysis implementation is to be modified

Figure 9: Focal Analysis: Question 1 Output. See
[2] for musical output.

Question Direct Mapping xCA
1 4.885 5.000
2 5.615 5.571
3 4.462 5.536
Mean 4.987 5.539

Figure 10: Table of Results. The values given are av-
erages of the answers provided by Mechanical Turk
([3]) respondents on a scale of zero (no relevance) to
ten (extremely relevant)

to run entirely within the Android operating system. This
will allow for a responsive demonstration of image to music
conversion without the need for an external web server.

9. CONCLUSIONS
We joined an emerging research topic of image and music

analysis, we developed a new method of analyzing an image
to determine its important features, and we created a mobile
application which allows music to be created from images.

Focal Analysis adds to the emerging research topic of the
relationship between images and music. This is a new type
of image analysis which is more advanced than current ap-
proaches to image to music conversion. The algorithm takes
into account the fact that humans do not look at images
pixel-by-pixel, from the left to right, moving downwards like
one reads a book. Instead, a viewer naturally sees contrast-
ing portions of an image, and his focus shifts in a nonlinear
fashion. Additionally, this algorithm produces determinis-



tic results, whereas other existing applications add random
elements to generated music. This is important because it
adds to the relevance and meaning of the generated output.
Different results for a single input image would dilute the
significance of an individual result. Finally, the mobile ap-
plicatioh demonstratesthe aalgorithm in an intuitive way. A
potential use case of this system is when auser is outside,
and they come across some compelling imagery. With this
mobile application, the user can quickly experience the vi-
sual imagery in a new way, which will add to the overall
experience.
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